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Abstract

MPI-IO/GPFS is a prototype implementation of the 1/O chapter of the Message Passing Interface
(MP1) 2 standard. It uses the IBM General Parallel File System (GPFS), with prototyped extensions,
as the underlying file system. This paper describes the features of this prototype which support its high
performance and robustness. The use of hints at the file system level and at the MPI-10 level allows
tailoring the use of the file system to the application needs. Error handling in collective operations

provides robust error reporting and deadlock prevention in case of returning errors.
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1 Introduction

To provide users with a portable and efficient interface for parallel 1/0, an 1/0 chapter was introduced in
the Message Passing Interface 2 standard [For97], based upon earlier collaborative work between researchers
al the IBM T.J. Watson Rescarch Center and the Nasa Ames National Laboratory [Cor96].

Since approval of the MPI-2 standard, IBM has been working on both prototype and product imple-
nientations of MPI-10 for the IBM SP system, using the IBM General Parallel File System [GPFS98] as
the underlying file system. Some features of this MPI-1O prototype depend upon complementary GPEFS
prototype work. This paper describes the main features of the prototype, referred to as MPI-IO/GPES.
IBM product implementation work draws on the knowledge gained in this protolype project but features of
the prototype discussed in this paper and features of eventual IBM products may differ.

The use of GPFS as the underlying file system engenders maximum performance through a tight inter-
action between MPI-IO and GPFS. GPTS is a high performance file system which presents a global view
of files Lo any client node. Tt allows parallel access to the data residing on server nodes through the 1BM
Virtual Shared Disk interface. GPFS provides coherent caching at the client, optimized prefetching tech-
niques, and guarantees recoverability from any single point of failure. New hints and directives aimed at
improving performance have been prototyped in the GPFS user interface as part. of this project. These hints
and directives are exploited by MPI-10 cither transparently or through MPIInfo hints the user can specify.

To avoid file block contention among tasks, MPI-10 uses data shipping. This technicque binds each
GPFS block to a single 1/0 agent, which is responsible for all accesses to this block. For write operations,
the tasks ship to each 1/0 agent, a command with that agent’s write assignment and the data to be written.
The agents then perform their assigned file writes. For reads, the tasks ship a command with the /O agent’s
read assignment. The agents read the file as instructed and ship the data to the appropriate tasks. The
(:PFS blocks are bound to a set of 1/0Q agents according to a round-robin striping scheme. MPI-10/GPTS
allows the user to define the stripe size. The stripe size also controls the amount of buffer space each 1/0
agent uses in each data access operation.

MPEIO/GPES is a robust and user-friendly implementation. It prevents deadlocks when an error oceurs
only on a subset of the tasks participating in a collective 1/O operation. The scheme consists in having each
task return either an crror code corresponding to the error which occurred locally or a code stipulating that
an error occurred on another participating task. The MPI standard allows a user to inquire in a portable
way about the error class of the ervor returned and take the appropriate action on each task. In addition,
errors which occur at the file system level can be traced on a per 1/O agent basis through an optional error
reporting feature that the user enables with an environment variable.

In this paper, we illustrate how hints allow tailoring the use of the file system to the application needs,
thereby imiproving performance. We also show that an inappropriate use of the hints may degrade pertfor-
mauce and address the issue of how to describe hints to the users in a language they can understand. Ervor
reporting in collective 1/0O operations is detailed in order to illustrate the robustness and user-friendliness of

MPLIO/GPES.

The paper is organized as follows. In Section 2, we present the hints and directives which have been
prototyped in GPFS to improve performance of parallel access to GPFS files. Section 3 details how data
shipping is implemented in MPLIIO/GPES. It also describes how GPFS hints and directives are used by
MPI-IO/GPES and how error handling in collective 1/0 operations is implemented. Section 4 presents
performance measurements to demonstrate the benefit. of using hints appropriately and the penalty incurred
when hints are used inappropriately. Section b presents some conclusions and suggests possible future
research directions for the MPIIO/GPIS prototype. All figures referenced in the text are gathered in the
Appendix.
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2 GPFS Hints and Directives

In the early stages of developing MPL-IO/GPES, the beunefit of having the underlying file systen work as
closely as possible with the MPI-10 layer became clear. To this end, some experimental options within GPIS,
file partitioning and multiple access range hints, were exported for use by the MPI-10/GPFS implementation.
This section describes these prototype features of GPFS.

2.1  GPFS File Partitioning

Although file partitioning [Vesta] was initially an experiment to improve the performance of applications
that show fine grained block sharing access patterns, MPLIIO/GPFS also benefits from reduced overhead in
the file partitioning mode.

I'ile partitioning mode partitious the file into a number of large pieces and allocates the responsibility
for reads and writes of each piece to a specific node. For example, blocks might be assigned across a set of
nodes in a round-robin fashion. To partition a file among a set of n nodes numbered 0,1, ..., n— 1, block ¢
of a file is assigned to node number ¢ mod n. Each node caches only those file blocks that are assigned to
it. Therefore, in this mode there is never any data shared between nodes so there is no need for distributed
locking, the default locking mode of GPFS [Patent]. Instead, a single shared lock on the file is issued to
each node responsible for data to facilitate recovery for failure cases. Shared partition locking eliminates
lock conflicts and greatly reduces the complexity and size of the state the lock manager maintains. When
im file partitioning mode, GPFS can also perform [/O operations more efficiently by issuing operations of at
least one file block, usually 256K, the default block size for GPI'S.

To maintain the consistency of the file system data, all nodes must access a file using either distributed
locking or file partitioning, not both at the same time. In our prototype, the two modes, shared partition-
ing and distributed locking are mutually exclusive. However, since distributed locking is the default, our
prototype has an external interface so that applicalions can request and set up file partitioning modle.

GPFES file partitioning mode fits well with MPI-IO/GPFS data shipping mode (sce Section 3.1.1).
The MPI-IO/GPFS layer knows when file partitioning would be most beneficial and how to best map the
partitioning. The MPI-IO/GPFS layer requests GPFS file partitioning mode and sets up the partitioning
parameters taking the burden off the user application. When MPI-IQ/GPI'S data shipping and GPFS file
partitioning work together, the application benefits [rom the strengths of both services. MPI-IO/GPFS can
most efficiently ship the data from the requesting nodes to the GPFS nodes responsible for the data and
GPES can rin more efficiently by always issuing large I/0 requests and using shared partition locking.

I'ile partitioning mode is controlled through external interfaces to GPFS. In the prototype, the interfaces
are called directives. This term is used instead of hints because hints by definition can be ignored, whereas
directives cannot. Ouce an application issues a file partitioning directive, GPTS executes the directive and
returng. It an error occurs or if GPIS is unable to complete the directive, an error code is returned.

There are three divectives for file partitioning: start, declare a server mapping, and stop. The start
directive is a collective operation that specifies an open file and the number of tasks participating in the file
partitioning mode. Fach task that issues a start directive is called a client task. By default, GPFS will use
a round robin block partitioning, assigning one file block in turny to each node from which a start directive is
issiied. Using the inap directive overrides this behavior. The map directive specifies a partition size, and the
list of server nodes. This allows users, or MPI-10/GPFS, to tailor the file partitioning to their application.
Server nodes can be responsible for any number of contiguous blocks and can also appear any number of
times in the partitioning. Figure | shows two examples of file partitioning with a varying number of servers
and varying partition sizes.

To terminate file partitioning mode, all client tasks that issued a start directive must issue a stop
directive. Once all the stop directives have been received by GPFS, the file is taken out of file partitioning
mode. If a client task issues the close() systein call before the stop directive, close() will issue a non-blocking
stop directive on the task’s behalf, however this is not recommniended.
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The greatest improvement in performance was found when doing small closely spaced write operations
to one file {rom many nodes. In this case, we saw up ta an 800% tmprovement in performance when using
the file partitioning mode. There were gains seen in other patterns as well, though not as dramatic. The
following is a briel synopsis of tests performed with our prototype. For all of the tests, an 8 node SP2 system
was used. Bach node had LGB of main memory of which GPFS was given 40MB as a buffer cache. Bach
node was a VSD server as well which served four 4GB disks to the one GPFS file system. Thus, the GPFS
file system which was mounted across all 8 nodes was 128GB. The file sizes used were all 2GB.

T'wo strided tests were performed for both read and write. Strided is delined as an operation of a given
size repeated at a regular interval in the file,

The first test was a tiled strided pattern. With » nodes, numbered 0 (o n-1 and an operation size of m
bytes, this pattern is; node i starts at offset ¢ i bytes, reads or writes m bytes, skips (n-{)*m bytes and
repeals the operation. This pattern, with small records and a small number of nodcs, yields several requests
per GPES file block. Multiple operations per block means data can be found in the cache for reads, but
results in fine grained block sharing for writes. Note that even tiled strided reads with small records can be
improved by using file partitioning. The benefit is that each block of the file needs to be read only once,
mstead of once by each node. On the down side, the overhead of additional messages and data copies will
take back some of the performance gain.

The second test was for a sparse strided pattern. This time the strides were deliberately chosen so that
no two consecutive operations at a node were to the same GPFS file block. For example, with a record size
of 12K, the stride was defined as 24 * 12K, Nole that the stricde grows with the number of nodes in the
first test. For larger node counts, nodes no longer do multiple operations per block, reads do not find data
already in cache and 1/0 patterns begin to look like those in the second test.

Not surprisingly, for access patterns that exhibit a high degree of write/write block sharing, file parti-
tioning avoids all token conflicts and shows the greatest performance improvement. Figures 2 and 3 show
the results of these tests.

2.2 GPFS Multiple Access Range Hint

GPTS recognizes sequential file access patterns and issues prefetchs and write behinds to maximize through-
put [Intro]. However, some applications have access patterns that are not sequential or even regular. Yet the
application does know the pattern. This is often the case for MPI-IO/GPFS. In the prototyped GPFS, we
added the multiple access range hint allowing an application to communicate to GPFS its intended access
pattern, both which blocks will be accessed soon and which are no longer needed.

With both sets of information, GPFS can best manage its buffer cache and provide progress on a
maximum ol prefetches. Successful prefetches enable GPFS to satisly upcoming requests directly from its
cache. When running at its best, the multiple access range hint can change the behavior of the application
from having to do totally synchronous 1/0 operations to totally asynchronous I/0 operations. This changes
the performance from the speed of the disk subsystem to the speed of the memory subsystem. Iigures 4 and
5 show the cffects on GPFS’s ability to do prefetch with and without the multiple access range hint.Notice
in figure 4 all 1/0 1s synchronous and in figure 5 all /O becomes asynchronous and the job is much faster.

The multiple access range hint takes two parameters, an artay of blocks that will soon be accessed and
an array of blocks that the application is finished accessing. There is a maximum number of blocks that
may be given in one hint. Depending on the current load, GPFS may initiate prefetching of some or all of
these blocks. Each block specified in the prefeteh list that is accepted for prefetching should eventually be
released via an identical entry in the finished list, otherwise GPTS will reach a maximum number of cached
blocks for this file and refuse any more prefetch requests for it.

Two tests were done to show the benefits of the multiple access range hint, random reads and random
writes. Using record sizes ranging from 4096 to 512Ixbytes, the multiple access range hint allowed the test
application to specify its future accesses so that GPES did prefetching even for this irregular access pattern.
Using this hint raised the read rale by 67%. Running the random read test on only a single node improved
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the performance by more than 500%. Random writes with the multiple dccess range hint improved the rate
by 130%. The performance is not as high when using many nodes becanse the test program creates similar
randoin patterns which often cause conflicts for prefetched blocks. There will be no such conflicts when
MPLIO/GPES uses multiple access range hints.

A final test performed for random writes used both multiple access range hints and file partitioning
which alleviated any write/write sharing. Combining the two options improved performance by more than
200%. Figure 6 shows the results of these tests. :

3 MPI-I0O/GPFS Features

This section first presents the features which enable MPI-IO/GPFS to achieve high performance with user
applications which can exhibit very distinet 1/0O patterns. Then, features of MPI-IO/GPFS which provide
robustness and user-friendliness are detailed.

3.1 High Performance Features

This section describes the various high performance features of MPI-IO/GPFS. The foundation of the design
of MPI-IO/GPFES is the technique we call data shipping. The user may enable or disable this feature on a
per open file basis. Additional features allow the user to instruct MPI-IO/GPTS, on a per open file basis, to
use GPFS file partitioning or to guide, on behalf of the application, the prefetching of GPFS blocks. These
features are implemented by MPLIO/GPFS through the use of the GPFS directives and hints introduced
in Section 2. PFinally, we raise the general issue of describing the purpose of a file hint in terms which are
meaningful to the user, given that the relationship between MPI calls to do 1/0 and the activity at the file
system level 1s complex and largely opaque to the MPL programmer. The choice of a meaningful name and
value format for a file hint is challenging. The name shonld be mnemonic and the set or range of values the
user selects from should have a recognizable relationship to the user’s understanding of her program’s 1/0
behavior.

3.1.1 Data Shipping

To prevent concurrent access of GPES file blocks by multiple tasks, normally residing on separate nodes,
MPI-IO/GPTS uses data shipping. This technique binds each GPFS file block to a single 1/0 agent, which
will be responsible for all accesses to this block. For write operations, each task distributes the data to
be written to the 1/O agents according to a binding scheme of GPFS blocks to I/O agents. /0O agents in
turn issue the write calls to GPFS. For reads, the [/O agents read the file first, and ship the data read to
the appropriate tasks. The binding scheme implemented by MPI-IOQ/GPFS consists iu assigning the GPFS
blocks to a set of 1/O agents according to a round-robin striping, illustrated in Figure 7. 1/0 agents are
multi-threaded and are also responsible for combining data access requests issued by all participating tasks
in collective data access operations.

On a per file basis, the user can define the stripe size used in the allocation of GPFS blocks to 1/0
agents. The stripe size is the value of file hint IBM.io_buffer_size, which can be specified when the file is
opened, or when the MPLFILESSET_INFO and MPI_FILE_SSET_VIEW functions arc called. 1t is possible to
change the stripe size of an opened file as long as no 1/0 operation is pending on the file. 'The stripe size also
controls the amount of bulfer space used by each 1/Q agent in data access operations, justifying its name.
The stripe size given by the user is rounded up by MPLI-IO/GPFS to an integral number of GPFS blocks,
and its default size is the number of bytes contained in 16 GPT'S blocks. GPFS block size defaults to 2561
unless set by a system administrator when GPFS is configured.

Finally, on a per file basis, the user can enable or disable MPI-10 data shipping by setting file hint
IBM_largeblock_io to “false” or “true", respectively. MPI dala shipping is enabled by default. When 1t is
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disabled, tasks issue read/write calls to GPFS directly. This saves the cost of MPI-1O data shipping but
risks GPFS block ping-ponging among nodes if tasks located on distinct nodes contend for GPFS blocks in
read-write or write-write sharing mode. In addition, collective data access operations are done independently.
Therefore, we recommend to disable data shipping on a file only when accesses to the file are performed in
large chunks or when tasks access disjoint large vegions of the file. In such cases, MPL-1O coalescing of the
1/0 requests of a collective dala access operation cannot provide benefit and GPEFS block contention is not
a concern.

3.1.2 GPFS File Partitioning

GPFES file partitioning is activated in MPLIO/GPYEFS on a per file basis when a file is opened in
MPI_MODE_UNIQUE_OPEN mode and file hint IBM_largeblock_io is not set or is set to “false”. The
IBM_largeblock.io value suggests that MPI1-10 data shipping mode, as described in Section 3.1.1, is to be
enabled on the file. MPI_LMODE_UNIQUE_OPEN promises there will be no other concurrent accesses to the file
so GPIS distributed locking is not required. There are two relevant aspects to GPFES file partitioning. The
benefit is that tokens only need to be acquired once (at the time GPFES file partitioning is started by MPI-
10/GPFS) by each 1/O agent for the GPFS blocks it is responsible for. Tokens will not be revoked until the
file is closed or until the user changes the 1/0 buffer size by specifying a new value for file hint 1BM_io_buffer_size.
When starting or restarting GPFS file partitioning, MPI-IO/GPFS sets a GPFS file partitioning map to
match the MPI-IO/GPFS striping of GPFS blocks across the I/O agents. The potential cost of GPFS file
partitioning mode is that when any node other than the one granted rights by the GPFS file partitioning
map tries to access a block, GPI'S must ship the data. By combining MPI-1O data shipping with this GPEFS
mode, we gain the token management benefit and never require GPEFS o do any data shipping. GPFS file
partitiontng will most benefit applications which write several small data records out of each GPFS block
they access.

3.1.3 Guided Prefetching of GPFS Blocks

The use of MPi Datatypes to define a file view means that a single MPI-1O call to read or write data may
mmplicitly represent. a series of file 1/O operations. The full series is known to the MPI library before the
first file operation. MPI-IO/GPES can exploit this “advance™ knowledge by using the GPFS multiple access
range hint. MPI-IO/GPIS can guide the prefetching of GPFS blocks when data shipping mode is enabled
on an opened file. Each time an 1/0O agent. data access is to occur, MPI-IO/GPFS analyzes the pattern of
I/0 requests the agent has been given. I the pattern contains a single byte range or a succession of byte
ranges which appear to represent a regular strided pattern, MPI will allow GPFS to malke its own preletching
decisions because sequential and strided access patterns are quickly recognized and efficiently handled by
GPFS. In other cases, MPI-IO/GPFS will compute for each GPFS block the lower and upper bounds of a
byte range which covers all the byte ranges to be accessed within that GPFS block. This builds a list, one
byte range per GPFS block, of ranges to be accessed. Then, it will apply the following prefetching policy,
assuming mar_pre represents the maximum number of GPES blocks that can be prefetched at once (a limit

set by GPIS):

[. At the beginning of the data access operation, GPFS tries to prefetch mai_pre byte ranges or all byte
ranges MPI-IO/GPFS has to access (if the total number of byte ranges it has to access is less than
MAT_Pre).

2. GPFS informs MPI-10/GPFS of how many GPFS blocks, actual_pre, were successfully prefetched. If
the total number of prefetched blocks is zero, MPLIO/GPES accesses one byte range. Otherwise, it
accesses the minimum of actual_pre and maz_ace byte ranges, where mar_ace represents the maximum
number of byte ranges which can be accessed at once (for experimentation with the prototype, this
number is controlled by an environment variable and can have any value between one and mav_pre).

3. Then, MPI-10/GPFS releases the byte ranges il just accessed and tries to prefetch as many GPFES

(o
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blocks whicht have not been either accessed or prefetched in order 'to get mar_pre prefetched blocks,
unless there are less than maz_pre byle ranges remaining to be accessed.

4. MPI-IO/GPFES iterates steps 2. and 3. until all byte ranges have heen accessed.

3.1.4 File Hint Expressiveness

[n Sections 3.1.1, 3.1.2, and 3.1.3, the reader can observe how MPI-IO/GPT'S exposes its high performance
features to the user. To control data shipping, the user can use two lile hints which are called IBM_largeblock_io
and IBM_io_buffer_size. These hints do not refer directly to MPI-IO/GPFS’s data shipping mode. Instead the
user expresses the general 1/0 pattern of her application on a per file basis and how much buffer space
should be made available to MPI-IO/GPFS to process each data access operation. To control GPFS file
partitioning, the user does not explicitly enable or disable it by calling the GPFS programming interface
which allows sending to GPFS the appropriate file partitioning directives. Instead, MPI-IO/GP¥FS does
it transparently to the user if the user has set the MPI_MODE _UNIQUE_OPEN mode when opening the file.
The MPI standard provides MPI.MODE UNIQUE_OPEN so the user can declare a case in which the MPI-1O
implementation may be able to perform additional optimizations. Because file partitioning is valuable but
cannot be used on shared files, the fit is quite neat. Finally, MPI-IO/GPFS controls, transparently to the
user, the prefetching of GPEFS blocks when data shipping is enabled on a file. The user is not aware of the
fact that MPI-IO/GPFS sometimes uses the GPEFS multiple access range hint under the cover to optimize
data access operations.

To summarize, file hints can either be explicitly provided by the user or deduced by the MPI-IO imple-
mentation on behalf of the user. In the former case, hint names should have ineaning which applies to the
user’s understanding of her application rather than to implementation details of high performance feature
the hint triggers. In the latter case, the user is not even aware that file hints are being used on her behalf.
The implementation triggers the file hint only when it estimates the hint would benefit the application, and
may restrict the use of the file hint to specific conditions controlled by user specified hints (eg the GPVFS
multiple access range hint is only used by MPI-IO/GPFEFS when file hint IBM_largeblock_io is not set or set
to “false”). The MPI_FILE_.GET_INFO function allows the user to discover the hints that have been defaulted,
accepted, or rejected for a given file,

3.2 Robust Error Reporting Capability

Clertain extensions to the base functionality of MPI-I0 were added to MPI-IO/GPIS, in support of better
error detection, recovery and debugging. These additions fall into two broad categories, collective communi-
cation robustness and MPI-10O specific tracing. The addition of MPI-IO to the MPI standard alters the model
of MPI programs. In the MPI-1 standard, there were, practically speaking, no MPI communication calls the
user could expect to recover from. The default for MPI errors was to abort the job and MPI-1 programs
tend not to check return codes. Unlike with communication errors, it is reasonable to expect a program
with a failing 1/O operation to recover and continue. Care should be taken in an MPI-IO implementation to
prevent errors on one task causing hangs on other tasks. The enhancements to the coltective operations allow
better program error recovery, while the tracing functions allow a programmer more detailed information for
error determination. '

3.2.1 Collective communication enhancements in MPI-IO/GPFS

In MPI-10, there are errors that a reasonable application would expecl to deal with, c.g., an invalid path
name on an MPIFILE_OPEN call or a write operation to a read-only file system. A robust implementation of
MPI-1O should allow an error to occur on one or more tasks yet allow the program as a whole to continue
to run without hangs or unexpected results.

Many of the MPI-1O calls are collective, which leads to three distinet kinds of errors:

6
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e The underlying 1/0 fails.
o Clollective call arguments are inconsistent or invalid.
o Commuunication errors.

Clommunicalion errors remain fatal with no user recovery. Fortunately, such errors are rare. ‘T'he other
two classes of errors may be handled by users.

On any MPI call, arguments arve locally checked for validity. When the call is an MPI-10 collective
one, MPI-IO/GPFES is designed so that no caller with an invalidt argument will return (rom the call until all
the other tasks in the file handle group have been notified that there has been an error. If any task were
to return immediately after detecting an argument error, without participating in the collective portion of
the MPI-IO operation while the other tasks went forward, the other tasks of the file handle group would
hang. This hang is prevented by storing the result of local argnment validity check in a variable and doing
an allreduce operation on it. The collective I/Q operation proceeds only when it is known at all tasks that
each task has been called and has vahd arguments.

Most of the collective MPI-10 calls have some arguments which must be identical across all of the tasks
in the file handle group. For performance reasons, it is desirable to avoid the overhead of consistency checking
for each 1/0 call in a working program. On the other hand, consistency errors may lead to subtle problems
which are not easily traceable. Within both collective communication and collective operations performed
on hehalf of MPI-IO operations, an enviromnent variable, MP_EUIDEVELOP is provided for extended
consistency checking. When develop mode is turned on by setting MP_EUIDEVELOP=DEVELOP, each
argument that must be identical across all callers is verified in the following manner.

o An array is filled with all of the arguments which must be checked for consistency.

e T'his array is sent to the left neighbor and received from the right neighbor. Task 0 sends to task p-1,
P bemg the nmumber of tasks m the file handle group.

e Lach element of the recelved array is compared to each element of the sent array. An error flag s set
when any mismatch is found.

o MPI Alireduce is called with the error flag as input to inform all tasks whether there was a neighbor to
neighbor inconsistency belween any pair of tasks.

An obvious optimization is to combine the reduction operations for develop mode consistency checking

and regular validity checking into a single operation. This allows the consistency checking to be done at an
incremental cost of a single MPI_Sendrecv operation.

3.2.2 MPI-IO/GPFS tracing

Since a data a

ss operation may involve several 1/0 agents which might all encounter an error when
accessing GPEIS, MPIIO/GPFS had to, as a quality of implementation matter, find a way to report all
occurring ervors al the file system level. Unlortunately, only one error code can be returned by an MPI-10
function call. Therefore, we defined a tracing scheme that would allow users to have access to all errors
which occurred on any 1/0 agent during their application run.

To enable MPI-10/GPFS tracing, the user sets an environment variable selecting either of two modes.
Tn one mode, only errors which occur during the application run are reported. In the other mode, along
with error tracing, all read/write calls to GPFS are reported with their return codes and the parameters
passed to the calls. In the latter mode, the user can optionally set a sccond environment variable to limit the
read /write operation tracing to operations performed above a specific file offset. By default, the read/write
operation tracing starts at offset zero. Brror records and read/write vecords are stored in one file per job
task, in directory /tmp on each node. The file naming convention ensures information pertaining to the 1/0
agent at each task will be written to a separate file.
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4 Performance Measurements

This section presents in detail the experimentation that we carried out on one of the three 483 quad-processor
node ASCHE Blue Pacific systems at Lawrence Livermore National Laboratory and on an 8 node SP system
al the IBM Research Center in Yorktown Heights. Tirst, each benchmark is described. Then, for each
benchmark, the platform used for the experimentation is presented, and the experimentation parameters
and results are detailed. Graphs showing actual bandwidths are provided to demonstrate the benefit of
the MPI-IO/GPES high performance features introduced in Section 3.1. The first two benchmarks, run at
Livermore, used MPI-10/GPFEFS on top of GPFS 1.2 which does not include the prototyped enhancements
discussed in Section 3.1.1. The second two were run with MPI-IO/GPFS on top of the prototype version of
GPFS on a much smaller machine inside IBM.

4.1 Benchmark Description

Let us first describe the four benchmarks used in our experimentation. Each is aimed at evaluating the
benefit of the high performance features of MPI-IO/GPFS for a particular class of application [/O patterns.
For all tests, the metric is read or write bandwidth expressed as Mb/second for the job as a whole. The
benehmarks will run with any number of tasks and provide every task with the same amount of 1/0 to do.
In our tests, the file size scales with the number of tasks. To provide a consistent approach to measurement,
i each benchmark, MPI Barrier is called before beginning the timing, making each task’s first call to the MPI
read or write routine well synchronized. In MPT semantic, the return from an MPI write operation does not
guarantee that data has been committed to disk. To ensure that the entire write time is counted, each test
does an MPI_File_sync and MPI_Barrier belore taking the end time stamp. In noncollective 1/0 it is possible
that some tasks do 1/0 faster than others and an argument could be made for averaging the times. The
synchronizations ensure, in both collective and noncollective tests, we measure jobh time which we consider
most meaningful.

4.1.1 Contiguous Benchinark

In the contiguous benchmark, cach task reads or writes sequentially a block of data from/to a single con-
tiguous region of a preexisting file. Region size, Lype of file access (read or write), and type of 1/O operation
(collective or noncollective) are parameters to the benchmark program. The number of tasks in the par-
allel job together with the region size determine the size of the file that is accessed. Use of either the

IBM_largeblock.io or the IBM o buffer_size file hint is controtled with environment variable settings.

The program uses the MPLLMODE_UNIQUE_OPEN file mode when opening the file. Since the data pattern
consists of contiguous pieces of data, the benchmark does not use MPI_Datatypes to create a mapped view of
the file: instead each task caleulates the offset at which to access the file, based on its task number and the
region size. Measurement s over the following sequence of steps which occur on each task:

o read/write the data buffer to/from the task’s assigned region of the file
e call MP1 Filesync

o call MPI_Barrier

and the resnlt is expressed in megabytes per sccond for the job.

4.1.2 Discontiguous Benchmark

In the discontiguous benchmark, each task reads or writes an equal number of 1024-byte blocks, where
the set of blocks that any one task reads or writes is scatlered randomly across the entire file. Working
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together, the tasks tile the entire file without holes or overlap. In the case of writes, the benchmark program
creates the file. Parameters control file size, type of file access (read or write), type of 1/0 operation
(collective or noncollective). Environment variables may be set to govern the use of the IBM.argeblock_io or
the IBM.io_buffer_size file hints, and to indicate whether MPI_File prealiocate should be used to preallocate space
for the new file in the case of writes. This benchmark opens the file with mode MPILMODE_UNIQUE_OPEN,
to indicate that no other user will simultaneously access the file.

The benchmark prograni reads or writes the file region by region, using a two gigabyte region size. llach
task is assigned some set of 1024-byte blocks to read or write in each region, and creates an MPI_Datatype
to map those blocks into their proper locations in the current region. This is accomplished by passing the
MPI_Datatype that maps the blocks as the filetype argument to MPi_Fileset_view. A two gigabyte region size
is used because it is the largest region possible with a 32-bit MP1 library. The span of addresses that can be
mapped with an MPI.Datatype is constrained by the size of an MPI_Aint variable, so a 32-bit MPI mandates
a maximumn region size of two gigabytes.

Since the tasks read or write different patterns of blocks at each iteration, the list of block assignments
is inspected before each read or write, to determine the range and position of the blocks in the current region
and to create the associated filetype. Measurement is over the {ollowing sequence of steps which occur at
each task:

e loop on the number of two-gigabyte regions in the file:

— scan the st of block assignments for blocks belonging to the current region
— create the filetype for the current region
— set the current file view
— read/write the assigned blocks (collectively or noncollectively)
e cend loop

o call MPI_Filesync

o call MP{_Barrier

and the result is expressed in megabytes per second for the job.

4.1.3 GPFS File Partitioning Benchmark

This benchmark measures the benefit of using GPFS file partitioning with MPI-IO/GPFES. Bach task reads or
writes the same small number ol non-overlapping noncontiguous data blocks from/to the file. The benchmark
loops on the data access operation. Starting addresses of all blocks are generated randomly across the file
and scattered among tasks. To simplily observations of how GPFS file partitioning affects 1/0O performance,
only noncollective data access operations are used in this benchmark.

The size of each block and the total number of blocks is specified by two benchmark parameters, so
that scope and amount of GPFS file partitioning can be controlled precisely. Another parameter specifies
whether to use GPFES file partitioning. Note that il the IBMargeblock_io hint is sel to "true” this parameter
will be ignored and data will be accessed without using GPTS file partitioning,.

By comparing the bandwidths obtained with GPFS file partitioning enabled (mode
MPI_MODE_UNIQUE _OPEN set. when the file is open) with those obtained with file partitioning disabled (mode
MPI_MODE _UNIQUE _OPEN not set), on various numbers of tasks, for read and write operations separately,
we can evaluate the performance improvement resulting from the use of GPFS file partitioning.

9
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4.1.4 Multiple Access Range Benchmark

This benchmark measures the benefit of using the GPFS multiple access range hint within MP1-10/GPES.
This benefit strongly depends on the application 1/O pattern, on the strategy MPI-IO/GPFS applies to
prefeteh/release GPIS blocks, and on the actions GPES takes in response to the number of blocks MPI-
10/GPES asks it to prefetch or release. By varying the data access parameters, such as the total amount
of data to be accessed, the amount of data Lo be accessed in each read/write operation, the distribution of
the data to be accessed onto the file as well as among the tasks, the /0 buffer size used by each 1/0 agent,
and the strategy MPI-IO/GPES applies for prefetching/releasing GPFES blocks, this benchmark can collect,
bandwidth information for various interactions of these lactors, '

In this benchmark, each task reads or writes a number of non-overlapping GPFS blocks from/to the
file. GPFES blocks are randomly assigned to tasks. Only sub-blocks scattered throughout each GPI'S block
are read/written. The munber of GPFS blocks to be accessed, the number of sub-blocks to be read/written
within each GPFS block, as well as the size of a sub-block are adjustable. An environment variable provides
control of the number of blocks MPI-IO/GPFS tries to access before prefetching new GPFS blocks and
releasing the GPI'S blocks just accessed. A value of zero for this environment variable disables the use of the
GPFS multiple access range hint. MPI derived datatypes are used to describe the layout ol the sub-blocks
to be accessed within each GPFS block.

As in the discontiguous bhenchmark, the construction of the filetype used for setting the file view for a
specific data layout {controlled by the number of sub-blocks per GPFS block and their size) is included in
the timing interval. Comparison of resulting bandwidths for various numbers of tasks allows to evaluate the
impact of the prefetching policy enabled by MPI-IQO/GPFES through the use of the GPFS multiple access
range hint.

4.2 Benchmark Results

This section presents, for each benchmark, the hardware platform and versions of the key software compo-
nents used in our experimentation. The performance data is presented in graphs, in the appendix at the end
of the paper, to facilitate the comparison of the aggregated bandwidths obtained with or without use of the
high performance features described in Section 3.1.

Sections 4.2.1 and 4.2.2 are based on performance measurements performed on IBM SP systems that
are part of the ASCI Blue Pacific complex at Lawrence Livermore National Laboratory [ASCI99]. Sections
4.2.3 and 4.2.4 are based on performance measurements performed on an 8 node system at the IBM T.J.
Watson Research Center, '

The ASCI Blue Pacific systems are based on 4-way nodes utilizing 332 Mhz 604¢c PowerZ processors.
Each of the nodes has 1.5 Gh of memory. The particular system hosting the experinientation includes 425
compute nodes and 56 1/O nodes. The GPFS configuration includes 38 VSD servers. GPFS page pools
occupy 50 MB on each compute node. The software configuration includes AIX 4.3.24, PSSP 3.1 and GPFS
1.2. A more detailed description of the file system configuration and GPFS performance statistics can be
found elsewhere [Jon00).

While 1t is preferable to make performance measurements on a dedicated system, each of the ASCI
Blue systems is so heavily used that this is not possible. Thus, these measurements were carried out on
the system in normal production operation. Despite this normal workload, efforts were made to make the
measurements at times when other jobs were not contending for the GPFS file system. The peak performance
on the contiguous benchmark with data shipping could be somewhat higher than our numbers, since 1t is
affected by switch traflic and we are not in a dedicated environment. The peak performance we report for
no data shipping is unlikely to change in a dedicated environment because our results are very reproducible.
In order to obtain an estimate of the peak performance of the file system, we ran each of our cxperiments
several tites and then report the highest value as listed in the tables below. We also use the data obtained
from several replications of the same runs in order to evaluate the impact of contention on the measurement

10
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results.

The contiguous and discontiguous benchmarks were run on 4, 8, 16, 32, 64, and 128 MP1 tasks. Bach
MPI task had an entire node of the machine dedicated to it. Measurements for MPI-IQ/GPFES are compared
to the same tests using the ROMIO (MPICH) implementation [Thal’99], [ThaM99], and to analogous tests
utilizing a traditional POSIN 1/0 interface. By analogous, we mean that the POSIN tests use the same data
layouts (across task memory and in the file) as the MPI-IO tests.

For all of the MPI-IO/GPYFS measurements and for the POSIX version of the contiguous benchimark,
/O bandwidth was measured for seven replications of the same experiment. For the POSIX version of
the discontiguous benchmark, the maximum achieved 1/0 bandwidths (< 10 MB/scc) made multiple nmea-
surements prohibitive. In this case, a single replication of each experiment was performed. The maximum
measured aggregated 1/0 bandwidth is reported lor each combination of benchmark, read or write operation,
MPI-10 implementation, and number of tasks.

4.2.1 Contiguous Benchmark

For the contiguous benchmark (section 4.1.1) a region size of 333 MB was used. Each MPT task wrote a
single region. In tlis situation, noncollective operations give the best performance. The dala transfers are
mdependent and can proceed in parallel with no coordination.

To illustrate the effect of using MPI data shipping (controlled by the IBM largeblock_io file hint), Figure 8
compares the results of running the contiguous benchmark with M P data shipping enabled (1BM_largeblock_io
set Lo "false”) to the same runs with MPI data shipping disabled (IBM _largeblock_io set to “true”). MPI data
shipping 1s enabled by default in MPI-1IO/GPES but. the default in the benchmark is to override that. For
comparison, we also include results obtained with ROMIO and POSIN.

With data shipping disabled, the performance of MPI-IQ/GPES is strikingly similar to the ROMIO and.
POSIX versions of the benchmark. These three versions exhibit a saturation of GPFS’s ability to process
the data with saturation occurring between 32 and 64 MPI tasks,

For the contiguous benchmark with large file regions, contention of tasks writing to the same GPIS
block is non-existent. Therefore, the logic and data movement involved in data shipping is purely overhead:.
For task numbers below 64, performance is less with data shipping enabled. The overhead of data shipping
has an interesting eflect for larger task numbers (64 and 128). We surmise that the overhead reduces the
rate of queneing requests to GPFS providing a sort of flow control which leads to better performance with
these large task numbers.

In Figure 9, results of the contiguous benchmark for read operations are displayed. Again with data
shipping disabled, MPILIO/GPES performs like the POSIX or ROMIO versions of the benchmark. Tn the
case of reads, the data layout is such that no data shipping is needed for optimal performance. Flow control
{or lack of it) is not an issue for the read tests. Enabling data shipping introduces additional overhead, and
the read performance with data shipping enabled is consistently lower than with the other three versions of
the benchmark.

The range of measured write bandwidths for the contiguous benchmark was observed to depend ou the
status of data shipping (controlled by the value of the IBM_largeblock_io hint). This variability of measured
perforimance is particularly evident for larger numbers of tasks. In Figure 10, we produce the standard
deviation, o, of the aggregated write bandwidth for the two cases,

. SR
nXa? — ()
n(n—1)
where @ s a single bandwidth measurement and n is the number of measurements. (We removed one data
point from our sample that had a very low value potentially due to system problems.) The standard deviation

with data shipping enabled exceeds the standard deviation with data shipping disabled for experiments with
32 or greater number of tasks. For 128 tasks, the standard deviation with data shipping is 35 times larger.

11
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The data is for MPI-IO/GPES only, since the results for ROMIO and POSIX are very similar to_those
obtained with MPI-IO/GPES and data shipping disabled.

A possible explanation for the dependeuce on data shipping, of the variability (expressed in ters of the
standard deviation) of the measured bandwidth is the following. When data shipping is enabled, all data
must be sent from the tasks (o the 170 agents, and write calls are issued by the 1/O agents. We notice an
increasing variability in the bandwidth with an increasing number of tasks since there is more contention
for switch access and becanse all tasks are trying to send data concurrently to each 1/0O agent. When data
shipping is disabled, i.e., the IBM_largeblock_io is set to "true”, there is no message passing occurring between
the MPI tasks and the 1/O agents during data access operations. Here, tasks are issuing [/0 calls to GPFS
directly. In this latter case, the variability in the measurements goes down to an almost insignificant level at
larger numbers of tasks., The turnover in the standard deviation curve without data shipping occurs when
the write rates begin to saturate because of the lack of flow control in GPFS 1.2, In summary, users on a
production machine such as this one may see a large variability in their write performance for large numbers
of tasks with data shipping, and significantly reduced variability in their write performance without data
shipping.

4.2.2 Discontiguous Benchmark

The discontiguous benchimark (described in Section 4.1.2) makes use of the optimized collective operations
with data shipping enabled. The file size in this benchmark amounts to 333 MBytes per MPI task. Again,
the POSIX and ROMIQ versions of this benchmark are compared to MPI-I0/GPFS.

In Pigure 11, results of the write performance tests for the discontiguous benchmark are presented.
Initially, the most striking aspect of the plot is the dismal performance when using the straight POSIX
interface. 1t s however not so surprising that writing to a GPFS file system in one KB block leads to
very poor performance. Experimental results show that MPLIO/GPFS with data shipping disabled leads
to qualitatively similar performance.

In Figure 12, results of the read performance for the discontiguous benchmark are presented. Again, the
performance of the POSIX version of the test shows poor performance as we would expect. MPI-1IO/GPES
and ROMIO show good performance, achieving over 375 MB/sec and 250 MB/sec respectively.

ROMIO shows substantial optimization of the 1/0 in comparison to the POSIX results. The performance
of ROMIO shows qualitatively different. behaviors for the write and the read tests. Where performance of
the vead test is scaling well, performance of the write test peaks in the neighborhood of 32 nodes and then
declines as the number of tasks increases.

We suspect that the additional load to GPYFS of the read - modify - write cycle for data sieving in
ROMIQ has led to the same sort of flow control issues noted in the write performance of the contiguous test.
[ThaF99)].

MPI-IO/GPFS shows the best write performance in the discontiguous benchmark reaching over 300
MB/sec and the best performance in the read test, reaching over 375 MB/sec. This demonstrates the benefit
of using data shipping combined with collective operations, leading to good scalability for both read and
write operations.

4.2.3 GPFS File Partitioning Benchmark

The GPES file partitioning benchmark sets the IBM largeblock_io hint to “false” and the IBM.o buffer size to
I6MB. The MPI_LMODE_UNIQUE_OPEN file mode is sel (resp. unset) when opening the file in order to enable
(resp. disable) GPPS file partitioning. The GPFS file partitioning benchmark was run on I, 2, 4, and 8
tasks, with one task per node. 10000 8KKB blocks were read or written by cach task from or to the file. 1/0
bandwidth was measured for seven replications of the same experiment.

The resulls for write operations are shown in Figure 13. Clearly, enabling GPI'S file partitioning resulls

12
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in substantial 1/O performance improvement in the case ol writes,

The results for read operations are shown i Figure 4. There is no significant difference between
enabling and disabling GPES file partitioning in the case of reads, since tokens granted once are never
revoked when file blocks are accessed only n read-read sharing mode.

4.2.4 Multiple Aceess Range Benchmark

The multiple access range benchmark was run on 1, 2, 4, and 8 tasks. The number of GPES blocks accessed
by each task was 100 and the size of each sub-block was 4KB. Combinations of various numbers of sub-blocks
{1, 2,8, 16) and various values for max_ace (0, 1, 2, 4, 8) were experimented with. A value of zero for max_ace
means that the GPFS multiple access range hint is not used and therelore no prefetching and releasing of
byte ranges is performed. The results of the multiple access range benchmark obtained for 8 tasks and 16
sub-blocks acc

ssed in each GPFS block are shown in Figure 15 for the various values of maa.acc. Results
of seven replications of the same experiment were averaged to get the bandwidth data. Substantial 1/0
performance improvement can be observed, comparing the vesult of enabling the use of the GPFS multiple
access range hint (mar_ace set to 1, 2, 4, 8) and of disabling it (maz_ace set to 0). It also clearly appears
that lower values for mar_ace lead to better performance improvement, especially for reads which benefit
the most from the use of the GPES multiple access range hint (as already observed in Section 2.2).

Figure 16 shows the bandwidths obtained for the various numbers of tasks with 16 sub-blocks accessed
in ecach GPFS block and the values of 0 (no use of GPI'S multiple access range hint) and 2 (a maximum of
two GPFES blocks are accessed between two prefetching operations) for mar_ace. The results show that the
benefit produced by using the GPES multiple access range hint increases with the number of tasks accessing
the file, again more noticeably for reads.

5 Conclusion

This paper illustrates how careful or even clever nse of file hints can allow users to improve the performance
of their MPI-10 applications on top of the IBM General Parallel File System. Data shipping is a clear winner
when data is read-write or write-write shared among several tasks. Increasing the stripe size and the 1/0O
agent buffer size leads to better performance, provided the application can spare the buffer space. We also
show how the MPL-IO/GPFES prototype itself makes use of GPTS hints in order to optimize prefetching and
minimize the number of requests made to the storage device servers. Lastly, MPI-IO/GPFS robustness and
user-friendliness is illustrated through its error reporting capability, which prevents deadlocks which may
result from errors occurring on a subset of the tasks participating in a collective 1/O operation.

We are currently investigating whether double buffering at the 1/0O agent can lead to increased perfor-
mance. We are also examining whether data sieving, already used in ROMIO [ThaF99], could be beneficial
to our prototype implementation. We are planning to study whether feedback from GPFS about the block
hit ratio induced by its buffer cache replacement and prefetching policies or about the 1/0 request service
time at the server side can be exploited by MPI-IO so that it can adapt its own prefetching pohicy or help
GPFS control the 1/0 request flow to an overloaded server.

We are also starting to define synthetic benchmarks which can, through the setting of multiple pa-
rameters study and compare the performance of various MPI-1IO implementations for scveral classes of
multi-threaded applications. The number of threads accessing lile data concurrently allows to control the
level of overlap between computation and 1/0 exhibited by the application and to evaluate the impact on
the application performance of thread scheduling policies.



Approval Draft

6 Acknowledgements

The authors would like to thank Robert Wim Yates for his thorough reviewing of the paper and for the
valuable comments he provided. The ASCI Blue Pacific system and the SP2 system al the IBM T.).
Watson were used for the experimentation. We also thank other users of these systems for their paticnce
and understanding, as well as the administrators of these systerms for their assistance in setting up the
appropriate system configuration.

References

[ASCI9]  www.linl.gov/asci/.

[Cor96]  P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost, M. Snir, B. Traversat,
and P. Wong, Chapter in Input/Output in Pavallel and Distributed Computer Systems, Ravi Jain,
John Werth, and James C. Browne, Eds., Kluwer Academic Publishers, June 1996, pp. 127-146.

For97 Message Passing Interface Forum, Mpi-2: A message-passing interfuce standard, Standards Doc-
g g ) { {
ument 2.0, Universily of Teanessee, IKnoxville, July 1997,
www.mpi-forum. org/docs /docs. himl.

[GPFSY8] IBM General Parallel File System for AIX: Installation and Administration Guide, IBM Docu-
nment SA22-7273-02, October 1998,
wwnw. rsGO00.ibm. com/resource fair_resource /sp_books /gpfs /instal Ladmin /install_admin_vir2/gpfs [mst.html.

[Intro] An hitvoduction to GPFS R1.2.
w0000 ibm.com/resource ftechnology/paper { htnl.

[Jon00] T. Jones, A. Koniges, and K. Yates, Performance of the IBM General Parallel File System, Proc.
International Parallel and Distributed Processing Symposium, May 2000. Accepted.

[Patent]  Patent USH950199, Schimuck et al., Parallel file system and method for granting byte range tokens,
IBM Almaden Rescarch, San Jose, CA 95120, Issued July 1999.

[ThalF99] R. Thakur, W. Gropp, and E. Lusk, Dala Sicving and Collective 1/0 in ROMIO, Proc. Tth
Symposiunt on the Frontiers of Massively Parallel Computation, February 1999, pp. 182-189.

[ThaM99] R. Thakur, W. Gropp, and E. Lusk, On Implementing MPI-10 Portably and with High Per-
Jormance, Proc. of the Sixth Workshop on 1/0 in Parallel and Distributed Systems, May 1999,
pp- 23-32.

Vesta P. Corbett and D. Feitelson, Design and Implementation of the Vesta Parallel File System, Proc.
g 1
of the Scalable High-Performance Computing Conference, May 1994, pp. 63-70.

This work was performed under the auspices of the U. S. Department of Energy by
the University of California, Lawrence Livermore National Laboratory under
Contract No. W-7405-Eng-48.



Approval Draft.

Appendix

Mapping: Each client node is a server, serving Mapping: Each client node is a server.

1 file block per client instance 6 f?le.b10CkS P?r cl:
Parameters: partition size: 1 block ‘r?bln in decending o:
number of nodes: 8 Parameters: partition size: 6 block
server list: 1, 2, 3, 3, 4, 5, 6, 7, 8, 8 number of nodes: <
server list: 4. 3.
SP Nodes SP Nodes
1 2 1 2
3 4 3 4
5 6 5 6
7 8 7 g

Client Application Instance Client Application Instance

Figure I: Sample mapping used by GPFS file partitioning
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Figure 2: Read performance achieved by GPI'S file partitioning
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Figure 3: Write performance achieved by GPFS file partitioning
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Random 40000B write, with hints
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Figure 13: Averaged bandwidths measured for write operations in the GPFS file partitioning benchmark
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Figure 14: Averaged bandwidths measured for read operations in the GPFS file partitioning benchmark
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